SFA’s Hill to Retire at End of Academic Year

first_imgOne of the most ambitious projects during Hill’s tenure became reality in 2015 when the athletic department began producing live ESPN3 telecasts of home football, basketball, soccer and volleyball games. A state of the art facility now produces these telecasts using SFA students as the production crew. Active on the national scene, Hill served a four-year term on the NCAA Division I Football Championship Committee where he was named chair during his final year.  He also is the current President of the Southland Conference Advisory Council. SFA also won its fourth consecutive Southland Conference women’s all-sports title in 2017 and fifth overall while winning the Southland Conference men’s all-sports trophies in 2013, 2011 and 2010. By winning the Commissioner’s Cup, the women’s all-sports title and the men’s all-sports title in 2010, SFA became just the second school to have swept all three awards in the history of the league.  Hill also played an important role in creating the “Battle of the Piney Woods” football game between SFA and Sam Houston State at NRG Stadium in Houston. The rivalry game moved from campus locations to the home of the Houston Texans in 2010. More than 26,500 attended the game in 2017. The partnership between Lone Star Sports and Entertainment, SFA and Sam Houston has created one of the most attended FCS football games of the year with the event now on a three-year rolling agreement because of its success. SFA became only the second school in the league’s history to repeat as Commissioner’s Cup winners for three consecutive years. In all, SFA has won five cups since 2010. “My mentor, Steve McCarty, always reminded me that to have a successful organization you need to hire great people and then stay out of their way and let them do their jobs,” Hill continued. “I’ve tried to follow that advice. Our coaches and support staff deserve all of the credit for what we have accomplished. Their dedication to our student-athletes and doing things the right way is what really makes SFA a Southland Conference leader.” At the conference level, Hill’s leadership helped SFA teams lay claim to 49 of the university’s 88 total Southland Conference titles. For the last three years, SFA has hoisted the Southland Conference Commissioner’s Cup – an annual award which represents the all-sports champion in the Southland Conference.  “Being able to pick my time to leave is rare in this business and I thank Dr. Pattillo and the Board of Regents for their support and confidence in me,” said Hill. Since Hill took over as director of athletics in the fall of 2005, SFA has enjoyed an unprecedented run of success both in the Southland Conference and on a national stage. Among the notable athletic achievements is an NCAA Division I national championship in bowling (2016); men’s basketball’s four appearances in the NCAA tournament which include wins over VCU (2014) and West Virginia (2016); Demi Payne becoming the first SFA athlete to claim a NCAA Division I individual title by winning the outdoor pole vault title in 2015; the first back to back Southland Conference titles in school history for football in 2009 and 2010; ten consecutive women’s conference track titles; five consecutive women’s soccer league titles and volleyball’s first NCAA tournament win in 2006.SFA Director of Athletics Robert Hill to Retire at End of Academic Year. #AxeEmStory | https://t.co/f2WG0Ef4yt pic.twitter.com/t3detyl5j7— SFA Athletics (@SFA_Athletics) January 30, 2018 A national search for Hill’s replacement will begin immediately. “I will always remain a Lumberjack and am looking forward to following the success of SFA athletics for many seasons to come,” Hill finished. NACOGDOCHES, Texas – Stephen F. Austin director of athletics Robert Hill announced Tuesday that he will retire from his role on May 31, 2018, following an affiliation with SFA athletics that spans over three decades in a various number of roles throughout the department.  In 2011 the National Association of Collegiate Director’s of Athletics named him Under Armour Athletic Director of the Year for the NCAA Football Championship Subdivision West Region. “Most importantly, I must acknowledge my wife Brenda and our children and grandchildren. Without their love, support and encouragement I would not have been able to spend the countless hours it takes to do this job. Now I look forward to having much more time to spend with them.” The academic success of SFA’s student-athletes has been a major point of emphasis to Hill throughout his time in charge of the department. In the 2016-17 academic year, 120 student-athletes received degrees and 201 SFA student-athletes were named to the Southland Conference Commissioner’s Honor Roll. SFA athletics arrived at a major milestone in the fall of 2017, too, by posting a collective student-athlete GPA of 3.0 for the semester.last_img read more

Robotic stingray powered by lightactivated muscle cells

first_imgThe result was a “medusoid”—a simple artificial creature composed of heart muscle cells overlaid on a sheet of silicone molded into a shallow cup rimmed with flaps. A bath of salt-sugar solution sustained the cells, and tiny jolts of electricity made the cells contract, changing the shape of the silicone cup so that the “jellyfish” expelled liquid, propelling it through its bath. “For me this was just a training exercise,” Parker recalls. “I’m trying to get better and better at building muscular pumps.” His new effort was also inspired by a visit to the aquarium. When his daughter touched a stingray in the petting tank, it flicked one side of its body and veered away. “Maybe there is something similar with how the stingray changes direction and heart flow,” Parker thought. So he decided to move up the tree of life, from jellyfish to rays, and increase the complexity of his team’s “biohybrids.”   Kevin Kit Parker wants to build a human heart. His young daughter loves the New England Aquarium in Boston. In this Science report, father’s and daughter’s obsessions have combined in an unlikely creation: a nickel-sized artificial stingray whose swimming is guided by light and powered by rat heart muscle cells. Incorporating advances in engineering, cell culture, genetics, and biomechanics, the “living” robot is “clearly a technical tour de force,” says Adam Summers, an integrative biologist at the University of Washington, Seattle. And some think that by melding cells and artificial materials into a pulsating structure, the device brings Parker’s dream of engineering a human heart a step closer. “One can imagine that one day we can use this technology to rebuild parts of the human body,” says Kedi Xu, a neural engineer at Zhejiang University in Hangzhou, China.  Read more about how the robotic stingray was captured for this week’s cover of Science. Again thanks to his daughter, he envisioned a simple way to control the new robot: light. When she was a toddler, Parker would guide her down the sidewalk by shining his laser pointer on the ground and having her stomp on the light. Perhaps his team could do something similar in an artificial ray by making the muscle cells contract in response to light. They turned to optogenetics, in which cells are genetically endowed with light-responsive molecules that trigger signaling cascades. Parker’s team had no experience with the method, but with a bravado befitting a lieutenant colonel who fought in Afghanistan before and after joining Harvard’s faculty, he decided to go ahead—cobbling together funding from the Army, the National Institutes of Health, and others. Parker asked a new postdoc, Sung-Jin Park, to oversee the work, confidently predicting the project would produce a paper featured on the cover of Science. “I thought it was crazy … impossible,” Park recalls. It took 4 years to fulfill Parker’s prediction. Park and others began by taking apart stingrays to learn how the muscles were arranged; later, colleagues in another lab analyzed how the muscles drive the fins in the synchronized undulations that propel the ray. To mimic the animal’s basic anatomy, Park experimented with many soft-robot configurations, eventually settling on a multipronged gold skeleton sandwiched between two silicone layers.Animating each ray are about 200,000 heart cells harvested from 2-day-old rat embryos and placed on top of the silicone. The silicone bears a template consisting of an extracellular protein, fibronectin, which guides the growth of the cells into a radiating pattern similar to the muscles in the real ray. Getting this architecture right was critical to making cardiac cells do the work of skeletal muscles, says Andrew McCulloch, a bioengineer at the University of California, San Diego, who was not involved with the work. But Parker’s group didn’t follow the ray’s muscle structure exactly. “They took a shortcut,” says Frank Fish, a biomechanist at West Chester University in Pennsylvania. Real rays have two sets of muscles within each pectoral fin, pulling in opposite directions to move a fin down, then up. The ray robot has just one set of muscles, which bend the fins downward; the spring action of the gold skeleton pulls the fins back up. Infected with a virus that delivers the gene encoding the optogenetic molecular switch, the modified cardiac cells twitch  when blue light shines on them. But translating that effect into coherent motion took months of tweaking; simply getting a robot ray to move forward when light stimulated the front of its fin took Park 200 tries. Ultimately, he built 100 more robots and showed they could navigate underwater obstacle courses. To negotiate turns, Park guides a ray with two light sources, one pointed at each fin. Changing the frequency of the light slows or speeds up the contraction rate; by making one side beat faster than the other, he steers the robot left or right. The rays move only about 9 meters per hour and turn slowly—quite pathetic by real stingray standards. Even so, “putting it all together is remarkable,” says Alexander Smits, a mechanical engineer at Princeton University. Fish, who helped design larger “manta bots” with silicone fins flapped by electronic-controlled rods and cables, calls the rays “a major leap forward in terms of robotics.” He adds, “we’re getting to the point where there really is a fusion between biology and engineering.” Kevin Kit Parker and his daughter compare a ray robot on a slide with a skate. Email Ken Richardson Video of AAAS TissueRay Finalcenter_img Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Karaghen Hudson Sign up for our daily newsletter Get more great content like this delivered right to you! Country Click to view the privacy policy. Required fields are indicated by an asterisk (*) Parker, an applied physicist at Harvard University, made his first foray into robotics 5 years ago after he was captivated by the jellyfish during a visit to the aquarium. The creature’s rhythmic pumping reminded him of the beating heart. His team had already gotten heart muscle cells to grow into thin films on silicone, and he wondered whether he could put the cells to work by incorporating them into a jellyfishlike “pump.”  There’s a long way to go, however. Live-muscle robots work only in nutrient-filled solutions warmed to a rat’s body temperature; keeping them going in a more natural environment will be a challenge, Fish says. And it’s unclear whether the approach will lead to practical robots or to Park and Parker’s true interest: a bioartificial heart. Simply putting down a second layer of muscle cells is daunting, nevermind recapturing the full complexity of the heart or a complete animal. The ray robot “is not really particularly related to anything in the heart,” especially because the heart muscle cells are “being used in a fairly unnatural way,” says Denis Buxton, a program officer at the National Heart, Lung, and Blood Institute in Bethesda, Maryland. But to Parker and others that “unnatural way” is very informative. “The heart is a hollow muscle,” explains Simon Hoerstrup, a cardiovascular surgeon at the University of Zurich Institute for Regenerative Medicine in Switzerland. “Many of the features you see in this ray, you find in the heart.” Parker regards his team’s miniature ray robot as a piece of art as well as technology: “Everyone is going to see something different” in it, he says. “I’m looking at it and I’m trying to understand the heart—and impress my 7-year-old daughter.”For the latest news and research in the world of robotics, visit our robots topic page.last_img read more